
INTRODUCTION
Disease elimination protocols are expected to result in the targeted disease 
agent being no longer present in the animal population and flow. To judge 
the success of elimination efforts, it is common to conduct recurring 
sampling over time from targeted animal cohorts. Whereas sample size 
determination methods for disease detection from single samplings are 
generally well understood, the importance of recurring sampling in judging 
successful disease elimination is poorly understood and executed. As it 
relates to sampling, confidence in the success of elimination protocols is 
influenced not only by sample size for each sampling but also by repeated 
sampling. Production systems continuously produce new cohorts of animals 
(e.g., groups of weaned pigs) that grow through sequential production 
phases, typically being moved from one physical location to another 
location. Opportunities for measuring disease elimination success occur as 
each new cohort of animals exits a location and moves downstream to the 
next. To support this aspect of appropriate sampling protocols for judging 
disease elimination, a methodology, algorithm and model were developed 
to incorporate both aspects of confidence – sample size and number of 
samplings. 

MATERIALS AND METHODS
Basic model user-defined input variables are: animal population size, 
animal prevalence, sample size (per sampling), assay sensitivity/
specificity, number of sequential samplings and number of simulation 
runs. The model accommodates selection of: sampling with or without 
replacement, and fixed or stochastically-generated prevalence per model 
iteration. To test the model a population of 1,000 animals and sample 
sizes of 15, 30, 60 and 90 were used to generate sets of data at animal 
prevalence levels of 1 %, 3 %, 5 % and 10 %. A minimum of 200 model runs 
of 30 consecutive samplings per run were generated for each prevalence 
level. All sets of runs were generated using sampling without replacement 
and stochastically-generated iteration prevalence. For the purpose of 
these simulations the diagnostic assay sensitivity and specificity were 
both set at 100 %. The detection threshold of interest was the sampling 
at which ≥ 95 % of model runs were detected as positive for the specified 
prevalence level. 

RESULTS AND DISCUSSION

Table 1 contains the results of the stochastic model simulation runs 
for the evaluated combinations of population prevalence and sample 
size per sampling event.

Table 1: Number of consecutive negative samplings required for 
greater than or equal to 95 % of samplings to detect at least one or 
more positive samples per positive case 

Prevalence threshold of positives per sampling
N samples 1 % 3 % 5 % 10 %

15 18 6 4 3

30 11 3 2 1

60 6 2 1 1

90 3 2 1 1

From Table 1, at the 1 % population prevalence level, for sample sizes 
15, 30, 60 and 90, the 95 % detection threshold was achieved at 
the 18th, 11th, 6th and 3rd samplings, respectively. In contrast, at the 
3 % population prevalence level, for sample sizes 15, 30, 60 and 90, 
the 95 % detection threshold was achieved at the 6th, 3rd, 2nd and 2nd 
samplings, respectively. 

The detection rate threshold of 95 % could be considered a reasonable 
proxy for a 95 % level of detection confidence at the corresponding 
number of consecutive negative samplings required to equal or exceed 
that detection rate. It follows then that, for a basic interpretation of 
Table 1, each value indicates the number of consecutive negative 
samplings at which there is a 95 % probability (and, by proxy, implied 
confidence) that the population prevalence is less than the evaluated 
level. For example, obtaining 11 consecutive negative case results 
where sampling 30 animals per sampling indicates there is a 95% 
probability that the prevalence of positives in the sampled population 
is less than 1 %; whereas obtaining six consecutive negative case 
results where sampling 60 animals per sampling indicates there is 
a 95 % probability that the prevalence of positives in the sampled 
population is less than 1 %. 

These specific simulations assumed “perfect” (100 %) diagnostic 
sensitivity (Se) and specificity (Sp). However, because it is very unlikely 
that any diagnostic assay can achieve 100 % Se and Sp, the model is 
capable of running simulations where the diagnostic Se and Sp are 
less than 100 %. Clearly, all factors that influence diagnostic Se and/
or Sp for tested samples (and, in turn, their corresponding cases) will 
influence the number of consecutive negative samplings required to, 
for a given level of confidence, judge a sampled population’s prevalence 
to be below a required threshold. For example, a few key factors 
that influence the diagnostic Se of a tested sample are the inherent 
performance capability of the assay used; testing laboratory factors; 
and sample collection, handling and shipping factors (e.g., pooling). 

CONCLUSION
This novel sampling model can be used to dynamically estimate the 
appropriate number of consecutive samplings at given sample sizes 
to collect for use in judging the success or failure of disease elimination 
protocols, as well as generate tables to be used as references for 
disease detection sampling that incorporate the influence of recurring 
samplings. 

The model and related tables thus can be useful in situations where 
detecting positive samples and corresponding cases are important 
for informed decision-making, e. g., in cohorts of expected-negative 
replacement animals intended for entry into expected-negative 
farms sites; as well as in cohorts of expected-negative young animals 
produced by a farm and cohorts of sentinel animals placed among an 
existing population that is undergoing a disease elimination protocol. 
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